3.2.99 \(\int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\) [199]

3.2.99.1 Optimal result
3.2.99.2 Mathematica [C] (verified)
3.2.99.3 Rubi [A] (verified)
3.2.99.4 Maple [B] (verified)
3.2.99.5 Fricas [B] (verification not implemented)
3.2.99.6 Sympy [F]
3.2.99.7 Maxima [F]
3.2.99.8 Giac [A] (verification not implemented)
3.2.99.9 Mupad [F(-1)]

3.2.99.1 Optimal result

Integrand size = 23, antiderivative size = 200 \[ \int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{a^{5/2} d}+\frac {13 \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{32 \sqrt {2} a^{5/2} d}-\frac {5 a}{28 d (a+a \sec (c+d x))^{7/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{7/2}}+\frac {3}{40 d (a+a \sec (c+d x))^{5/2}}+\frac {19}{48 a d (a+a \sec (c+d x))^{3/2}}+\frac {51}{32 a^2 d \sqrt {a+a \sec (c+d x)}} \]

output
-2*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/a^(5/2)/d-5/28*a/d/(a+a*sec(d*x 
+c))^(7/2)+1/2*a/d/(1-sec(d*x+c))/(a+a*sec(d*x+c))^(7/2)+3/40/d/(a+a*sec(d 
*x+c))^(5/2)+19/48/a/d/(a+a*sec(d*x+c))^(3/2)+13/64*arctanh(1/2*(a+a*sec(d 
*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(5/2)/d*2^(1/2)+51/32/a^2/d/(a+a*sec(d*x+c 
))^(1/2)
 
3.2.99.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.29 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.45 \[ \int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {a \left (-14-13 \operatorname {Hypergeometric2F1}\left (-\frac {7}{2},1,-\frac {5}{2},\frac {1}{2} (1+\sec (c+d x))\right ) (-1+\sec (c+d x))+8 \operatorname {Hypergeometric2F1}\left (-\frac {7}{2},1,-\frac {5}{2},1+\sec (c+d x)\right ) (-1+\sec (c+d x))\right )}{28 d (-1+\sec (c+d x)) (a (1+\sec (c+d x)))^{7/2}} \]

input
Integrate[Cot[c + d*x]^3/(a + a*Sec[c + d*x])^(5/2),x]
 
output
(a*(-14 - 13*Hypergeometric2F1[-7/2, 1, -5/2, (1 + Sec[c + d*x])/2]*(-1 + 
Sec[c + d*x]) + 8*Hypergeometric2F1[-7/2, 1, -5/2, 1 + Sec[c + d*x]]*(-1 + 
 Sec[c + d*x])))/(28*d*(-1 + Sec[c + d*x])*(a*(1 + Sec[c + d*x]))^(7/2))
 
3.2.99.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.13, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 25, 4368, 27, 114, 27, 169, 27, 169, 27, 169, 27, 169, 27, 174, 73, 219, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^3(c+d x)}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {1}{\cot \left (c+d x+\frac {\pi }{2}\right )^3 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {1}{\cot \left (\frac {1}{2} (2 c+\pi )+d x\right )^3 \left (\csc \left (\frac {1}{2} (2 c+\pi )+d x\right ) a+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4368

\(\displaystyle \frac {a^4 \int \frac {\cos (c+d x)}{a^2 (1-\sec (c+d x))^2 (\sec (c+d x) a+a)^{9/2}}d\sec (c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^2 \int \frac {\cos (c+d x)}{(1-\sec (c+d x))^2 (\sec (c+d x) a+a)^{9/2}}d\sec (c+d x)}{d}\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {a^2 \left (\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}-\frac {\int -\frac {a \cos (c+d x) (9 \sec (c+d x)+4)}{2 (1-\sec (c+d x)) (\sec (c+d x) a+a)^{9/2}}d\sec (c+d x)}{2 a}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \int \frac {\cos (c+d x) (9 \sec (c+d x)+4)}{(1-\sec (c+d x)) (\sec (c+d x) a+a)^{9/2}}d\sec (c+d x)+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\int \frac {7 a \cos (c+d x) (5 \sec (c+d x)+8)}{2 (1-\sec (c+d x)) (\sec (c+d x) a+a)^{7/2}}d\sec (c+d x)}{7 a^2}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\int \frac {\cos (c+d x) (5 \sec (c+d x)+8)}{(1-\sec (c+d x)) (\sec (c+d x) a+a)^{7/2}}d\sec (c+d x)}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\int \frac {5 a \cos (c+d x) (16-3 \sec (c+d x))}{2 (1-\sec (c+d x)) (\sec (c+d x) a+a)^{5/2}}d\sec (c+d x)}{5 a^2}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\int \frac {\cos (c+d x) (16-3 \sec (c+d x))}{(1-\sec (c+d x)) (\sec (c+d x) a+a)^{5/2}}d\sec (c+d x)}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\frac {\int \frac {3 a \cos (c+d x) (32-19 \sec (c+d x))}{2 (1-\sec (c+d x)) (\sec (c+d x) a+a)^{3/2}}d\sec (c+d x)}{3 a^2}+\frac {19}{3 a (a \sec (c+d x)+a)^{3/2}}}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\frac {\int \frac {\cos (c+d x) (32-19 \sec (c+d x))}{(1-\sec (c+d x)) (\sec (c+d x) a+a)^{3/2}}d\sec (c+d x)}{2 a}+\frac {19}{3 a (a \sec (c+d x)+a)^{3/2}}}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\frac {\frac {\int \frac {a \cos (c+d x) (64-51 \sec (c+d x))}{2 (1-\sec (c+d x)) \sqrt {\sec (c+d x) a+a}}d\sec (c+d x)}{a^2}+\frac {51}{a \sqrt {a \sec (c+d x)+a}}}{2 a}+\frac {19}{3 a (a \sec (c+d x)+a)^{3/2}}}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\frac {\frac {\int \frac {\cos (c+d x) (64-51 \sec (c+d x))}{(1-\sec (c+d x)) \sqrt {\sec (c+d x) a+a}}d\sec (c+d x)}{2 a}+\frac {51}{a \sqrt {a \sec (c+d x)+a}}}{2 a}+\frac {19}{3 a (a \sec (c+d x)+a)^{3/2}}}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\frac {\frac {13 \int \frac {1}{(1-\sec (c+d x)) \sqrt {\sec (c+d x) a+a}}d\sec (c+d x)+64 \int \frac {\cos (c+d x)}{\sqrt {\sec (c+d x) a+a}}d\sec (c+d x)}{2 a}+\frac {51}{a \sqrt {a \sec (c+d x)+a}}}{2 a}+\frac {19}{3 a (a \sec (c+d x)+a)^{3/2}}}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\frac {\frac {\frac {26 \int \frac {1}{2-\frac {\sec (c+d x) a+a}{a}}d\sqrt {\sec (c+d x) a+a}}{a}+\frac {128 \int \frac {1}{\frac {\sec (c+d x) a+a}{a}-1}d\sqrt {\sec (c+d x) a+a}}{a}}{2 a}+\frac {51}{a \sqrt {a \sec (c+d x)+a}}}{2 a}+\frac {19}{3 a (a \sec (c+d x)+a)^{3/2}}}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\frac {\frac {\frac {128 \int \frac {1}{\frac {\sec (c+d x) a+a}{a}-1}d\sqrt {\sec (c+d x) a+a}}{a}+\frac {13 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {a}}}{2 a}+\frac {51}{a \sqrt {a \sec (c+d x)+a}}}{2 a}+\frac {19}{3 a (a \sec (c+d x)+a)^{3/2}}}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {a^2 \left (\frac {1}{4} \left (\frac {\frac {\frac {\frac {\frac {13 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {a}}-\frac {128 \text {arctanh}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{\sqrt {a}}}{2 a}+\frac {51}{a \sqrt {a \sec (c+d x)+a}}}{2 a}+\frac {19}{3 a (a \sec (c+d x)+a)^{3/2}}}{2 a}+\frac {3}{5 a (a \sec (c+d x)+a)^{5/2}}}{2 a}-\frac {5}{7 a (a \sec (c+d x)+a)^{7/2}}\right )+\frac {1}{2 a (1-\sec (c+d x)) (a \sec (c+d x)+a)^{7/2}}\right )}{d}\)

input
Int[Cot[c + d*x]^3/(a + a*Sec[c + d*x])^(5/2),x]
 
output
(a^2*(1/(2*a*(1 - Sec[c + d*x])*(a + a*Sec[c + d*x])^(7/2)) + (-5/(7*a*(a 
+ a*Sec[c + d*x])^(7/2)) + (3/(5*a*(a + a*Sec[c + d*x])^(5/2)) + (19/(3*a* 
(a + a*Sec[c + d*x])^(3/2)) + (((-128*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqr 
t[a]])/Sqrt[a] + (13*Sqrt[2]*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[2]*Sqr 
t[a])])/Sqrt[a])/(2*a) + 51/(a*Sqrt[a + a*Sec[c + d*x]]))/(2*a))/(2*a))/(2 
*a))/4))/d
 

3.2.99.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4368
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_), x_Symbol] :> Simp[-(d*b^(m - 1))^(-1)   Subst[Int[(-a + b*x)^((m - 1)/2 
)*((a + b*x)^((m - 1)/2 + n)/x), x], x, Csc[c + d*x]], x] /; FreeQ[{a, b, c 
, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]
 
3.2.99.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(527\) vs. \(2(163)=326\).

Time = 1.76 (sec) , antiderivative size = 528, normalized size of antiderivative = 2.64

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (1365 \cos \left (d x +c \right )^{3} \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+13440 \cos \left (d x +c \right )^{3} \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )+4095 \cos \left (d x +c \right )^{2} \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+40320 \cos \left (d x +c \right )^{2} \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+4095 \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+40320 \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+1365 \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-16034 \cos \left (d x +c \right )^{3} \cot \left (d x +c \right )^{2}+13440 \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-25280 \cos \left (d x +c \right )^{2} \cot \left (d x +c \right )^{2}+3164 \cos \left (d x +c \right ) \cot \left (d x +c \right )^{2}+24080 \cot \left (d x +c \right )^{2}+10710 \cot \left (d x +c \right ) \csc \left (d x +c \right )\right )}{6720 d \,a^{3} \left (\cos \left (d x +c \right )+1\right )^{3}}\) \(528\)

input
int(cot(d*x+c)^3/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
1/6720/d/a^3*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)^3*(1365*cos(d*x+c)^3* 
2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)/(-cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2))+13440*cos(d*x+c)^3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+4095*cos(d*x+c)^2*arctan(1/ 
2*2^(1/2)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)*(-cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)+40320*cos(d*x+c)^2*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+4095*arctan(1/2*2^(1/2)/(-cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)+40320*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*(-cos(d*x+ 
c)/(cos(d*x+c)+1))^(1/2)+1365*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a 
rctan(1/2*2^(1/2)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-16034*cos(d*x+c)^3*c 
ot(d*x+c)^2+13440*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/ 
(cos(d*x+c)+1))^(1/2)-25280*cos(d*x+c)^2*cot(d*x+c)^2+3164*cos(d*x+c)*cot( 
d*x+c)^2+24080*cot(d*x+c)^2+10710*cot(d*x+c)*csc(d*x+c))
 
3.2.99.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 361 vs. \(2 (161) = 322\).

Time = 0.38 (sec) , antiderivative size = 748, normalized size of antiderivative = 3.74 \[ \int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {1365 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{5} + 3 \, \cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right ) - 1}\right ) + 6720 \, {\left (\cos \left (d x + c\right )^{5} + 3 \, \cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (-8 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 4 \, {\left (8017 \, \cos \left (d x + c\right )^{5} + 12640 \, \cos \left (d x + c\right )^{4} - 1582 \, \cos \left (d x + c\right )^{3} - 12040 \, \cos \left (d x + c\right )^{2} - 5355 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{13440 \, {\left (a^{3} d \cos \left (d x + c\right )^{5} + 3 \, a^{3} d \cos \left (d x + c\right )^{4} + 2 \, a^{3} d \cos \left (d x + c\right )^{3} - 2 \, a^{3} d \cos \left (d x + c\right )^{2} - 3 \, a^{3} d \cos \left (d x + c\right ) - a^{3} d\right )}}, -\frac {1365 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{5} + 3 \, \cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) - 6720 \, {\left (\cos \left (d x + c\right )^{5} + 3 \, \cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) - 2 \, {\left (8017 \, \cos \left (d x + c\right )^{5} + 12640 \, \cos \left (d x + c\right )^{4} - 1582 \, \cos \left (d x + c\right )^{3} - 12040 \, \cos \left (d x + c\right )^{2} - 5355 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{6720 \, {\left (a^{3} d \cos \left (d x + c\right )^{5} + 3 \, a^{3} d \cos \left (d x + c\right )^{4} + 2 \, a^{3} d \cos \left (d x + c\right )^{3} - 2 \, a^{3} d \cos \left (d x + c\right )^{2} - 3 \, a^{3} d \cos \left (d x + c\right ) - a^{3} d\right )}}\right ] \]

input
integrate(cot(d*x+c)^3/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[1/13440*(1365*sqrt(2)*(cos(d*x + c)^5 + 3*cos(d*x + c)^4 + 2*cos(d*x + c) 
^3 - 2*cos(d*x + c)^2 - 3*cos(d*x + c) - 1)*sqrt(a)*log((2*sqrt(2)*sqrt(a) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) + 3*a*cos(d*x + c) + 
 a)/(cos(d*x + c) - 1)) + 6720*(cos(d*x + c)^5 + 3*cos(d*x + c)^4 + 2*cos( 
d*x + c)^3 - 2*cos(d*x + c)^2 - 3*cos(d*x + c) - 1)*sqrt(a)*log(-8*a*cos(d 
*x + c)^2 + 4*(2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + 
c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 4*(8017*cos(d*x + c)^5 + 1 
2640*cos(d*x + c)^4 - 1582*cos(d*x + c)^3 - 12040*cos(d*x + c)^2 - 5355*co 
s(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^3*d*cos(d*x + c)^5 
 + 3*a^3*d*cos(d*x + c)^4 + 2*a^3*d*cos(d*x + c)^3 - 2*a^3*d*cos(d*x + c)^ 
2 - 3*a^3*d*cos(d*x + c) - a^3*d), -1/6720*(1365*sqrt(2)*(cos(d*x + c)^5 + 
 3*cos(d*x + c)^4 + 2*cos(d*x + c)^3 - 2*cos(d*x + c)^2 - 3*cos(d*x + c) - 
 1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))*cos(d*x + c)/(a*cos(d*x + c) + a)) - 6720*(cos(d*x + c)^5 + 3*cos(d*x + 
 c)^4 + 2*cos(d*x + c)^3 - 2*cos(d*x + c)^2 - 3*cos(d*x + c) - 1)*sqrt(-a) 
*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(2 
*a*cos(d*x + c) + a)) - 2*(8017*cos(d*x + c)^5 + 12640*cos(d*x + c)^4 - 15 
82*cos(d*x + c)^3 - 12040*cos(d*x + c)^2 - 5355*cos(d*x + c))*sqrt((a*cos( 
d*x + c) + a)/cos(d*x + c)))/(a^3*d*cos(d*x + c)^5 + 3*a^3*d*cos(d*x + c)^ 
4 + 2*a^3*d*cos(d*x + c)^3 - 2*a^3*d*cos(d*x + c)^2 - 3*a^3*d*cos(d*x +...
 
3.2.99.6 Sympy [F]

\[ \int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\cot ^{3}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate(cot(d*x+c)**3/(a+a*sec(d*x+c))**(5/2),x)
 
output
Integral(cot(c + d*x)**3/(a*(sec(c + d*x) + 1))**(5/2), x)
 
3.2.99.7 Maxima [F]

\[ \int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {\cot \left (d x + c\right )^{3}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^3/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(cot(d*x + c)^3/(a*sec(d*x + c) + a)^(5/2), x)
 
3.2.99.8 Giac [A] (verification not implemented)

Time = 1.08 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.48 \[ \int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {\frac {1365 \, \sqrt {2} \arctan \left (\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {13440 \, \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {105 \, \sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}} + \frac {2 \, \sqrt {2} {\left (15 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{3} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a^{36} - 84 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a^{37} - 385 \, {\left (-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}} a^{38} - 2730 \, \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a^{39}\right )}}{a^{42} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{6720 \, d} \]

input
integrate(cot(d*x+c)^3/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
-1/6720*(1365*sqrt(2)*arctan(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a)) 
/(sqrt(-a)*a^2*sgn(cos(d*x + c))) - 13440*arctan(1/2*sqrt(2)*sqrt(-a*tan(1 
/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a^2*sgn(cos(d*x + c))) + 105*sq 
rt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/(a^3*sgn(cos(d*x + c))*tan(1/2*d 
*x + 1/2*c)^2) + 2*sqrt(2)*(15*(a*tan(1/2*d*x + 1/2*c)^2 - a)^3*sqrt(-a*ta 
n(1/2*d*x + 1/2*c)^2 + a)*a^36 - 84*(a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt( 
-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^37 - 385*(-a*tan(1/2*d*x + 1/2*c)^2 + a)^ 
(3/2)*a^38 - 2730*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^39)/(a^42*sgn(cos( 
d*x + c))))/d
 
3.2.99.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^3}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(cot(c + d*x)^3/(a + a/cos(c + d*x))^(5/2),x)
 
output
int(cot(c + d*x)^3/(a + a/cos(c + d*x))^(5/2), x)